This post is again about improving the upsampling of the half-resolution SSAO render target used in the VKDF sponza demo that was written by Iago Toral. I am going to explain how I used information from the normals to understand if the samples of each 2×2 neighborhood we check during the upsampling belong to the same surface or not, and how this was useful in the upsampling improvement.
Tag: vulkan
Depth-aware upsampling experiments (Part 3.1: Improving the upsampling using depths to classify the samples)
In my previous posts of these series I analyzed the basic idea behind the depth-aware upsampling techniques. In the first post [1], I implemented the nearest depth sampling algorithm [3] from NVIDIA and in the second one [2], I compared some methods that are improving the quality of the z-buffer downsampled data that I use with the nearest depth. The conclusion was that the nearest depth sampling alone is not good enough to reduce the artifacts of Iago Toral’s SSAO implementation in VKDF [4] to an acceptable level. So, in this post, I am going to talk about my early experiments to further improve the upsampling and the logic behind each one. I named it part 3.1 because while having started the series I’ve found that some combinations of these methods with other ones can give quite better visual results, and as my experiments with the upsampling techniques cannot fit one blog post, I am going to split the upscaling improvements (part 3) in sub-parts.
Depth-aware upsampling experiments (Part 2: Improving the Z-buffer downsampling)
In the previous post of these series, I tried to explain the nearest depth algorithm [1] that I used to improve Iago Toral‘s SSAO upscaling in the sponza demo of VKDF. Although the nearest depth was improving the ambient occlusion in higher resolutions the results were not very good, so I decided to try more quality improvements. In this post, I am going to talk about my first experiments on improving the Z-buffer downsampling.
Continue reading Depth-aware upsampling experiments (Part 2: Improving the Z-buffer downsampling)
Some additions to vkrunner
A new option has been added to Vkrunner (the Vulkan shader testing tool written by Neil Roberts) to allow selecting the Vulkan device for each shader test.
Depth-aware upsampling experiments (Part 1: Nearest depth)
This post is about different depth aware techniques I tried in order to improve the upsampling of the low resolution Screen Space Ambient Occlusion (SSAO) texture of a VKDF demo. VKDF is a library and collection of Vulkan demos, written by Iago Toral. In one of his demos (the sponza), Iago implemented SSAO among many other graphics algorithms [1]. As this technique is expensive, he decided to optimize it by using lower resolution textures and render target, which he then upsampled to create a full resolution image that he blended with his original one to display the result. For the upsampling he used linear interpolation, and as expected he observed many artifacts that were increasing by lowering the SSAO textures resolution.
Some time ago, I started experimenting with methods to improve that upsampling in order to familiarize myself with Vulkan. The most promising ones seemed to be the depth-aware techniques:
Continue reading Depth-aware upsampling experiments (Part 1: Nearest depth)
Vkrunner allows specifying the required Vulkan version
The required Vulkan implementation version for a Vkrunner shader test can now be specified in its [require]
section. Tests that are targeting Vulkan versions that aren’t supported by the device driver will be skipped.
Continue reading Vkrunner allows specifying the required Vulkan version
Having fun with Vkrunner!
Vkrunner is a Vulkan shader testing tool similar to Piglit, written by Neil Roberts. It is mostly used by graphics drivers developers, and was also part of the official Khronos conformance tests suite repository (VK-GL-CTS) for some time [1]. There are already posts [2] about its use but they are all written from a driver developer’s perspective and focus on vkrunner’s debugging capabilities. In this post, I’m going to show you an alternative use I’ve found for it, in order to have fun with pixel shaders during my holidays! π