[OpenGL and Vulkan Interoperability on Linux] Part 10: Reusing a Vulkan stencil buffer from OpenGL

This is 10th post on OpenGL and Vulkan interoperability with EXT_external_objects and EXT_external_objects_fd. We’ll see the last use case I’ve written for Piglit to test the extensions implementation on various mesa drivers as part of my work for Igalia. In this test a stencil buffer is allocated and filled with a pattern by Vulkan and then it is used in OpenGL to render something else. We validate that the pattern has been imported correctly and we repeat the process for other depth-stencil formats.

Continue reading [OpenGL and Vulkan Interoperability on Linux] Part 10: Reusing a Vulkan stencil buffer from OpenGL

[OpenGL and Vulkan Interoperability on Linux] Part 9: Reusing a Vulkan z buffer from OpenGL

In this 9th post on OpenGL and Vulkan interoperability on Linux with EXT_external_objects and EXT_external_objects_fd we are going to see another extensions use case where a Vulkan depth buffer is used to render a pattern with OpenGL. Like every other example use case described in these posts, it was implemented for Piglit as part of my work for Igalia‘s graphics team to check the extensions implementation of various mesa drivers.

Continue reading [OpenGL and Vulkan Interoperability on Linux] Part 9: Reusing a Vulkan z buffer from OpenGL

[OpenGL and Vulkan Interoperability on Linux] Part 8: Using a Vulkan vertex buffer from OpenGL and then from Vulkan

This is the 8th post on OpenGL and Vulkan Interoperability with EXT_external_objects and EXT_external_objects_fd where I explain some example use cases of the extensions I’ve implemented for Piglit as part of my work for Igalia. In this example, a Vulkan vertex buffer is created and filled with vertices and then it’s used to render the same chess board pattern once with OpenGL and once with Vulkan.

Continue reading [OpenGL and Vulkan Interoperability on Linux] Part 8: Using a Vulkan vertex buffer from OpenGL and then from Vulkan

[OpenGL and Vulkan Interoperability on Linux] Part 7: Reusing a Vulkan vertex buffer from OpenGL

This is the 7th post on OpenGL and Vulkan Interoperability with EXT_external_objects. It’s about another EXT_external_objects use case implemented for Piglit as part of my work for Igalia‘s graphics team. In this case a vertex buffer is allocated and filled with data from Vulkan and then it’s used from OpenGL to render a pattern on screen.

Continue reading [OpenGL and Vulkan Interoperability on Linux] Part 7: Reusing a Vulkan vertex buffer from OpenGL

[OpenGL and Vulkan Interoperability on Linux] Part 6: We should be able to reuse a Vulkan pixel buffer from OpenGL but not to overwrite it!

This is another blog post on OpenGL and Vulkan Interoperability. It’s not really a description of a new use case as the Piglit test I am going to describe is quite similar to the previous example we’ve seen where we reused a Vulkan pixel buffer from OpenGL. This Piglit test was written because there’s an interesting issue (Issue 7) in the spec according to which overwriting Vulkan buffers with glBufferSubData is not possible! This is interesting because we can overwrite textures but not buffers. When we attempt to overwrite a buffer using glBufferSubData the driver must return an Invalid Operation Error and this is what we tested with the vk-pix-buf-update-errors test that can be found in tests/spec/ext_external_objects directory like all other tests we’ve seen so far.

Continue reading [OpenGL and Vulkan Interoperability on Linux] Part 6: We should be able to reuse a Vulkan pixel buffer from OpenGL but not to overwrite it!

[OpenGL and Vulkan Interoperability on Linux] Part 5: A Vulkan pixel buffer is reused by OpenGL

This is the 5th post of the OpenGL and Vulkan interoperability series where I describe some use cases for the EXT_external_objects and EXT_external_objects_fd extensions. These use cases have been implemented inside Piglit as part of my work for Igalia‘s graphics team using a Vulkan framework I’ve written for this purpose.

And in this 5th post, we are going to see a case where a pixel buffer is allocated and filled by Vulkan and its data are used as source data for an OpenGL texture image.

Continue reading [OpenGL and Vulkan Interoperability on Linux] Part 5: A Vulkan pixel buffer is reused by OpenGL

A simple pixel shader viewer

In a previous post, I wrote about Vkrunner, and how I used it to play with fragment shaders. While I was writing the shaders for it, I had to save them, generate a PPM image and display it to see the changes. This render to image/display repetition gave me the idea to write a minimal tool that automatically displays my changes every time I save the file with the shader code and use it when the complexity of the scene is increasing. And so, I’ve written sdrviewer, the minimal OpenGL viewer for pixel shaders of the video below:

Continue reading A simple pixel shader viewer

Having fun with Vkrunner!

Vkrunner is a Vulkan shader testing tool similar to Piglit, written by Neil Roberts. It is mostly used by graphics drivers developers, and was also part of the official Khronos conformance tests suite repository (VK-GL-CTS) for some time [1]. There are already posts [2] about its use but they are all written from a driver developer’s perspective and focus on vkrunner’s debugging capabilities. In this post, I’m going to show you an alternative use I’ve found for it, in order to have fun with pixel shaders during my holidays! 🙂

Continue reading Having fun with Vkrunner!

i965: Improved support for the ETC/EAC formats on Intel Gen 7 and previous GPUs

This post is about a recent contribution I’ve done to the i965 mesa driver to improve the emulation of the ETC/EAC texture formats on the Intel Gen 7 and older GPUs, as part of my work for the Igalia‘s graphics team.

Demo:

The video mostly shows the behavior of some GL calls and operations with and without the patches that improve the emulation of the ETC/EAC formats on Gen7 GPUs. The same programs run first with the previous ETC/EAC emulation (upper terminal) and then with the new one (lower terminal).

Continue reading i965: Improved support for the ETC/EAC formats on Intel Gen 7 and previous GPUs